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Abstract. The deterministic Q2R cellular automaton has been tested by many authors as 
a fast algorithm to simulate the lsing model in the microcanonical ensemble. However, 
the magnetic susceptibility curve, measured from the fluctuations of the magnetization. is 
found to be farbelow the expected results inside the ordered lsing phase. The non-ergodicity 
degree of this automaton seems to be inadequate to simulate the king dynamics. In this 
work, we introduce two modified automata, and test their performance for the square 
lattice. For the first one, we found improved results concerning the king transition. For 
our second modified automaton the king transition does not occur, the magnetization 
vanishing even for energies far below the normal critical threshold. On the other hand, 
another transition appears at a different critical energy value that seems to be the same as 
that of the periodic-chaotic transition already observed in the normal QZR dynamics. The 
critical indices of this new transition are measured from finite-size scaling, the results 
indicating that it is at the same universality class as the Ising transition. 

1. Introduction 

The idea of using deterministic cellular automata (CA) to simulate statistical models 
was first proposed by Pomeau [ l ]  and Vichniac [ 2 ] ,  exploring the parallel processing 
characteristic of CA and the absence of random numbers in order to obtain fast 

in the four bonds linking each spin to its neighbours can assume values 0, 1, 2, 3 and 
4, according to the number of these neighbours presenting opposed spins relative to 
the central one. The total energy is 
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where the sum covers the nearest-neighbour pairs of- sites, uk is a Boolean (0 or 1) 
variable representing the current spin up or down at site !i, and 0 represents the XOR 
(exclusive OR) logical operation. Equation (1) simply defines the energy as the current 
number of broken bonds in the lattice, i.e. the number of pairs of neighbouring sites 
presenting opposed spins. 

The most common way to simulate the thermodynamic behaviour of this model is 
the so-caiied Metropoiis aigorithm [jj. in this case, one tests the iocai energy of each 
spin. If it is 2, 3 or 4, the spin is flipped, transforming the local energy to 2, 1 or 0, 
respectively. This recipe corresponds to the relaxation step, allowing the system to 
release energy to the environment. If the local energy is 1 or 0 the flipping is also 
allowed, but now according to probabilities exp( -21  T )  and exp( -41 T ) ,  respectively. 
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This second stochastic fluctuation step allows the system to absorb energy from an 
environment maintained at a constant temperature T, and guarantees that states 
iteratively generated by this rule appear with a frequency proportional to the Boltzmann 
factor exp(-E/ T )  corresponding to the canonical ensemble. The thermodynamical 
average ( Q )  of some quantity Q is obtained simply by summing the values of Q 
corresponding to a sequence of states generated by the above recipes, discarding a 
certain quantity of the initial states in order to avoid influences of the artificially chosen 

One of the main problems concerning simulations is the computer time consump- 
tion. In order to overcome this problem and improve the performance, a multi-spin 
code [4] was introduced. In this code, many non-nearest-neighbour spins are updated 
simultaneously, using the fast bitwise parallel operations AND, OR, XOR, NOT and 
SHIFT provided by any digital computer. For the square or cubic lattice king model, 
the spin and the local energy of each site are stored in just four bits of a computer 
word. On 16-bit personal computers, for instance, this strategy allows the storage of 
four spins in only one computer word, updating the system in parallel for sets of four 
spins simultaneously. I n  the case of 64-bit mainframes, sets of 16 spins are treated in 
parallel. 

I n  an improved version [ 5 ]  only the spin states are kept, there being no need to 
store the local energy values. Storing one spin state per bit, the number of spins updated 
simultaneously in parallel is the same as the computer word length (16 on PC). The 
square lattice, for instance, must be divided in two chessboard sublattices, the updating 
being performed first for one of them and then for the other one. Other lattices must 
also be divided in a similar way, with no nearest-neighbour spins in the same sublattice. 
However, in all those references the stochastic step is performed sequentially by 
generating a real random number between 0 and 1 and comparing it with the relative 
Boltzmann factor exp( -2/ T )  or exp(-4/ T )  corresponding to local energies e = 1 or 
0, in order to decide if the spin must or must not be flipped. This procedure consumes 
much computer time, compromising the efficiency of the simulations. In order to 
improve the performance of such simulations, instead of random real numbers, another 
improved version [6] uses words whose bits randomly assume the value 1 according 
to a predefined probability which can be adjusted to coincide with exp(-2/T) or 
exp( -41 T ) ,  allowing the completely parallel treatment of the problem. 

The CA alternative was introduced to bypass the stochastic step. For the square 
lattice, the Q2R rule corresponds simply to flipping the spin if and only if the 
corresponding local energy is e = 2 .  Again, the lattice must be divided into two 
chessboard sublattices. This rule does not alter the energy of the system, and for this 
reason it is supposed to perform a microcanonical simulation of the king model [ l ,  
21. The question about the adequate spanning of the space of states in this automaton, 
as compared with the correct Ising dynamics, however, remains to be answered. 
Supposing, for the moment, that we are dealing with a true microcanonical simulator, 
let us analyse bow to measure thermal averages. Contrary to the canonical ensemble, 
where the energy E fluctuates and a constant-temperature thermal average (E) must 
be measured, in microcanonical simulation the value of E itself is maintained constant. 
Both ensembies are rigorousiy equivaient, and tnermai averages can a!so be obtained 
from microcanonical simulations. I n  this case, one must obtain the temperature T for 
which the canonical averaged energy (E)  would coincide with the constant value E 
adopted in the real microcanonical simulation. One way to do this was proposed by 
Lang and Stauffer [7] through the probability P ( e )  of obtaining local energy e at a 

initial state (the so-ca!!ed therma!iza!ion !ransien!)t 
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given site. For instance, consider one site with e =  1 .  By flipping this spin, maintaining 
all others in their current states, the increment in the energy would be 2, and the local 
energy would change to e = 3. The Boltzmann factor corresponding to the whole system 
would be also decreased by a factor exp(-2/T). Thus, one can use the relation 

in order io  deiermine the vaiue of T from Piij and Pijj, both measured from a 
microcanonical simulation. Analogously, one can measure P(0)  and P(4), obtaining 
the temperature T from 
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as a function of T instead of E, by using the relation T ( E )  obtained from the same 
simulations through equation (20) or (26).  

Concerning the computational performance, the advantage of this strategy over the 
Monte Carlo alternative is the absence of random numbers and comparisons. The 
computer time consumption is drastically reduced for each update of the whole system, 
although more updates are needed in order to obtain good averages. Comparing the 
performances obtained for the canonical Monte Carlo simulations using the completely 
parallel code [6] and for the Q2R code [ 8 ]  that is also completely parallel, both running 
on the same 16-bit computer, we conclude that there is no real advantage in using 
Q2R, because the time saving obtained due to the faster update of the whole lattice 
does not compensate the need of a greater number of updates. The same behaviour 
must also h e  expected for vectorized computers, as !he same vectorization tricks [9j 
can also be applied to the completely parallel Monte Carlo code [6], which uses exactly 
the same storage and updating strategy. 

Nevertheless, the non-ergodicity degree of Q2R, as compared with the true lsing 
model, is still an open question, and many recent works [7-121 are dedicated to 
investigating it. For this reason, we think that there are many points to be clarified in 
the study of 0 2 R  and related CA: in particular their relation to the king model (up to 
now, this relation is not clear at all). The square lattice magnetization was measured 
for large lattices (up to 1280x 1280) [8], and the results are in complete agreement 
with the exactly known Onsager solution. For the cubic lattice, Lang and Stauffer [7] 
also found good agreement with available Monte Carlo data for the magnetization 
and specific heat above and below the critical point, as well as for the susceptibility 
only above the critical point. They also compared Q2R data for the magnetization 
fluctuations to the susceptibility curve obtained from Monte Carlo canonical simula- 
tions below the critical point: discrepancies of up to  two orders of magnitude are 
observed, indicating that the Q2R rule should underestimate the real fluctuations of 
the true king dynamics in the ferromagnetic phase. Later, Moukarzel and Parga [ I O ]  
realized that microcanonical fluctuations cannot be directly compared to the susceptibil- 
ity curve: without the inclusion of a correcting term accounting forthe canonical energy 
fluctuations absent from the microcanonical scheme. However, even after the inclusion 
of this correction, Q2R data for the square lattice are still below the expected curve. 

Another interesting point is the influence of the starting spin state. In  order to 
simulate some energy value E, one must first choose a convenient initial distribution 
of spins u p  and down along the lattice, the resulting energy coinciding with the desired 
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value E. Starting from the ferromagnetic ground state (all spins up), flipping spins one 
after another at random, and measuring the energy after each flip until the desired 
value is reached, one succeeds in constructing such an initial state [7, 10, 111. We 
always used this procedure in the present work. In this case, as observed by Moukarzel 
[ I l l ,  the relative distributions P ( e )  of sites with local energies ( e  =O, 1, 2, 3 and 4) 
does not match the corresponding distributions observed in thermalized states obtained 
from Monte Carlo canonical simulations, even after many Q2R updates are performed. 

correct curve [13] are observed [ l  I]  below the critical point. On the other hand, starting 
from previously thermalized states presenting the correct relative distributions P ( e ) ,  
obtained from canonical Monte Carlo simulations, the cdrrect curve T(  E )  was success- 
fully reproduced by the Q2R dynamics [ I l l .  This fact shows that Q2R dynamics is 
not able to mix adequately all the possible different relative distributions of local 
energes, :n order to reach the eq.dibrkm ri!ios (20) 2nd ( 2 6 ) .  The i-portan: 
conclusion is that the non-ergodicity degree of Q2R is really not adequate to simulate 
the Ising model below the critical point. Although the Q2R dynamics breaks the 
symmetry at the right critical energy spanning only one half space of states below it 
(the positive magnetization half, for instance) giving rise to a phase transition, it does 
not span this half space adequately, underestimating the degree of fluctuations charac- 
teristic of the ferromagnetic Ising phase Gctually, even above t h e  cri!ical poin!, Q2R~ 
dynamics is known to be non-ergodic [14]. Although the true lsing dynamics must 
also be non-ergodic, in order to give the correct averages for the various thermodynamic 
quantities and to break the symmetry between positive and negative magnetizations 
below the critical point, the degrees of non-ergodicity are distinct for these two 
dynamics. 

A third interesting point about 0 2 R  is that, besides the kinglike transition occurring 
at the critical energy density gc= (2-d?)/4= 0.146, it presents a second transition 
[ U ]  at another lower critical value %,=0.063 (estimated for 6 4 x 6 4  finite lattices, in 
reference [ 121). Below this value, the dynamic evolution of each spin has a finite period 
(much less than 2N,  where N is the number of sites in the lattice), while infinite periods 
(of the same order of 2 N )  were found above this threshold. The name 'periodic-chaotic' 
[12] will be used hereafter to refer to this transition. Compact clusters of neighbouring 
spins oscillate with the same period below gp, and the closer the energy to this 
threshold, the larger the mean cluster size. The second moment of the cluster period 
distribution presents the same behaviour as the susceptibility of a normal magnetic 
transition, blowing up at %, Up to now, the physical mechanism responsible for this 
transition has not been fully understood. 

Some recent works on Q2R dynamics [15, 161 show that a very large number of 
time steps are needed in order to improve the numerical results for thermal averages. 
Nevertheless, as inferred from the above discussion, the Q2R dynamic rule does not 
adequately span the half space of states corresponding to positive magnetization, and 
cannot be considered as a good microcanonical simulator for the king model below 
the critical energy threshold. The aim of this work is to introduce some modified CA 

rules in order to improve the mixing capacity of the corresponding dynamics. TWO of 
these modified rules [17, 181 are presented and discussed. For details about the 
computation strategy, see [19]. Adopting the first modified rule, we are able to obtain 
good numerical results for both the magnetization and susceptibility, although taking 
only a reasonable number of time steps. The second modified rule presents another 
unknown transition which is studied through finite-size scaling. 

P M C de Oliveira et a1 
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2. First modification 

Instead of considering only the four bonds linking each site to its four nearest 
neighbours, we will now take into account the six bonds linking each pair of nearest- 
neighbour sites to its surrounding neighbourhood, as shown in figure 1. Maintaining 
fixed the six spins around the central pair of sites linked by the thick dark line, both 
spins will be flipped if this change does not alter the energy of the system, i.e. if just 
three among the six neighbouring bonds are currently broken. The energy quanta 
stored in these broken bonds now have a greater mobility along the lattice, during the 
dynamic evolution. Our idea is that this increased mobility can also enhance the degree 
of ergodicity in the space of states, improving the results obtained from the simulation. 

Now, the parallel processing cannot be performed for one entire chessboard 
sublattice simultaneously, but another geometric division of the lattice is necessary, 
as shown in figure 2. The pairs corresponding to the thick dark lines are updated in 
parallel for the left figure, then the same process is repeated for the right figure, and 
again for six similar geometric arrangements. After the whole process, each spin is 
updated four times, as it has four nearest neighbours, belonging alternately to four 
different thick dark lines during the dynamic evolution. We used periodic boundary 
conditions. 

We performed simulations for 128 x 128 lattices, taking ten different starting states 
for each energy value. Figures 3 and 4 show the averaged values for the magnetization 
and its fluctuation, respectively. Full curves correspond to the exact solution of the 

+ 
Figure 1. Two distinct schemes for the dynamic rules proposed to simulate the square 
! z t t i ~ e  !sing m-ode! ia the i i i(c:oca~~aica! ensemb!e. In Q X  (!eft), the cent:.?! spin is sipped 
ifjust two of the four bonds linking it to the neighbourhood are currently broken (opposed 
spins). In our proposal (right), both spins linked by the thick dark line are Ripped ifjurt 
three among the six bonds linking them to the neighbourhood are currently broken. 

Figure 2. Scheme of the Arrt two parJk!  updating steps o f  our modified CA rule. One 
complete update of the whale lattice corresponds to a total of eight such steps, each spin 
being updated four times. 
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Figure 3. Magnetization as a function of the energy. The full curve is the exactly known 
curve. Results obtained from Q2R cellular automaton correspond to triangles, while the 
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0.1 0.15 L 
Figure 4. Mean squared fluctuation of the magnetiration as a function of  the energy. The 
full curve corresponds to the canonical exactly known result, being equal to the product 
Tx. The dotted curve corresponds to the microcanonical correction. The vertical scale is 
logarithmic. 

!sing mode! in !he canonirz! ensemb!~, !he one In figure A being equal to the product 
temperature x susceptibility. The dotted curve corresponds to the microcanonical mag- 
netization fluctuation, and was obtained from Monte Carlo canonical simulations using 
the correction term defined by Moukarzel and Parga [lo]. The number of complete 
updates for each initial state varied from 10' (for E=0.07 and 0.18) to IOh-107 (for 
g=0.13 and 0.15). For g=0.14,  even taking IO' updates, we did not succeed in 
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obtaining reliable numerical results, due to the large fluctuations observed. The com- 
puter time for each complete update is one order of magnitude higher than in Q2R. 
Triangles correspond to Q2R data, while circles show the results obtained from our 
modified CA. For energies where only circles appear, both values coincide. The error 
bars are smaller than the symbols, except for two points just above the transition, in 
figure 3. The maximum observed for 8 = 0.15 in figure 4 agrees with the correct known 
value for 128 x 128 lattices. Small deviations are observed for the Iower energies 
(8 = 0.07 and 0.08) for our CA, while much larger deviations (the vertical scale is 
logarithmic) occur since below 8-0 .11  in the case of Q2R. These deviations also 
vanish in the case of Q2R, if one takes more and more updates [IS, 161. This very 
slow relaxation behaviour is nicely demonstrated by measuring the time rate of damage 
spreading [15]. 

3. Second modification 

Returning to our idea that Q2R is a very restrictive rule concerning the allowed 
movements of the energy quanta stored in broken bonds, we will now introduce another 
modification in this CA. 

In the previous modified CA defined in section 2, all energy quanta are allowed to 
move up to two lattice parameters in each update, instead of only one lattice parameter 
allowed in Q2R [see figure 1).  Now, we will return to the ordinary Q2R rule. After 
each complete Q2R update of the whole lattice, however, a complementary update is 
introduced: we search for a site whose local energy is currently e=O, and also for 
another site with e = 4, Ripping both the corresponding spins. The total energy is also 
conserved. Another Q2R complete update is then performed, followed by another 
search for two spins with local energies e = 0 and 4, and so on alternately. The search 
for the e = 0 site is performed sequentially along the lattice, starting from the location 
where it was found in the previous step. The same procedure is also used in searching 
for the e = 4  site. As only two more spins are updated than would be by the Q2R 
traditional rule in each step (for a 512x512 lattice, the largest size we tested, this 
represents less than O.OOl%), one might think that this new CA rule would lead to a 
negligible change in the results. Nevertheless, the e = 0 site can be found at any  distance 
from the corresponding e = 4 site, introducing a non-local transport of energy that 
represents a quolirafiue change in comparison with Q2R-like dynamic rules, which 
allow energy transport in only small scales of length. 

Simulations performed for 6 4 x 6 4  finite lattices show that the king transition at 
gC = 0.146 disappears. A vanishing magnetization was measured for decreasing energies, 
starting from above this value, until &=0.06. Below this lower threshold, non- 
vanishing magnetization values reappear, indicating the existence of another transition. 
The magnetization fluctuation plots corresponding to this new transition are shown in 
figure 5 for lattice sizes up to 512x 512. Note that fluctuations are drastically reduced 
below the maxima for each size. Note also that this transition occurs in the same 
energy range as the periodic-chaotic one observed in the pure Q2R [121 (8,-0.063 
was measured for 6 4 x  64 lattices). 

In order to estimate both the critical energy value and the critical exponents for 
this new transition, we used the same data presented in figure 5 for energies above 
the maxima to construct the data collapsing plots of A'mL' against ( g - g T ) L ' .  The 
parameters 8T=0.0485, x=-0.95 and y =  1.83 are chosen in order to optimize the 
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collapsing. As the Onsager universality class corresponds to x = - 1 and y = 1.75, one 
is inclined to suppose that this transition may belong to this class. Instead of the 
optimized exponents, figure 6 was constructed by using the king values x = -1 and 
y = i.75, in order io iesi ihis hypoihesis. Xoie ihai oniy ihe daia corresponding to the 
smallest sizes 64x64  and 128 x 128 present small deviations far from the critical point 
(the scale is now linear). Using the optimized values one obtains a better collapse. 
Other data collapsing plots below each maximum for both the fluctuations and the 

A h  Y 

2.8 - 
2.6 - 0 

0 1 a 3 ( E -  &)U 

Figure 6. Data collapsing plol constructed using the same values of figure 5 ,  above the 
maxima. The lattice sizes are represented by the same symbols aa in figure 5. 
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magnetization are compatible with the same results, i.e. & = 0.049 and Onsager 
exponents. 

A possible interpretation for these results is that the additional flipping of two 
spins with local energies 0 and 4 is enough to allow the system to jump from one half 
phase space (with positive magnetization, for instance) to the other, resulting in a zero 
magnetization. However, this mixing of states is only possible when the system is above 
the periodic-chaotic threshold g,,. Below this energy value, due to the formation of 
compact islands of spins with the same period [ 121, the additional flip of only one 
spin would be not enough to destroy the collective dynamic behaviour of such a whole 
island, giving rise to the reappearance of the king order. In other words, when the 
system is in the periodic phase, the spins are unable to jump from one half phase 
space to the other, in the thermodynamic limit. According to this interpretation, the 
various symmetries of the ordered lsing phase are maintained and the critical exponents 
remain the same, in agreement with the experimental results. The drastic lowering of 
the fluctuations below gT seems to confirm this interpretation. 

For this second modified rule, the average number of complete lattice updates is 
-10’. We noted a systematic curious feature. During the time evolution, the average 
fluctuations first seem to stabilize at some value, remaining nearly con~tant  for many 
updates. Then they increase rapidly to another definitive value. The beginnings of 
these two plateaux differ from sample to sample, but the final value is nearly the same 
for all of them, even for samples where both plateaux are already completed after 10’ 
steps, we observed no additional values until 10’ steps. 

4. Conclusions 

The use of the Q2R cellular automaton as a microcanonical simulator for the king 
model is discussed. In particular, the distinct non-ergodicity degree presented by this 
automaton when compared with the true k ing  dynamics below the critical point leads 
to underestimated measures of the fluctuations. We defined two modifications in the 
traditional Q2R dynamic rule, measuring the magnetization and its fluctuations for 
the square lattice. In  the first modified rule, by enhancing the mobility of the energy 
quanta stored in broken bonds, we succeeded in reproducing the expected results. In 
this case, however, the local character of the energy transport was maintained, i.e. only 
small-length-scale movements are allowed, as in the Q2R traditional rule. 

In our second modified rule, we included a much smaller change in the Q2R 
dynamics, as compared with our first modification, but now allowing large-length-scale 
energy transport. The Ising transition disappears, and another unknown transition was 
detected far below the Onsager critical point. The critical exponents corresponding to 
this new transition were measured, and their values coincide with the Onsager ones. 
The critical point, on the other hand, coincides with the energy for which a second 
transition was observed in the Q2R traditional dynamics [12]-below this value the 
system presents clusters of neighbouring spins oscillating with the same finite period, 
whereas above this value no periodic behaviour was found (the mean size of these 
clusters seems to ’blow up’ at the critical point, as in the percolation problem [12]). 
A possible explanation for the relation of these three transitions is proposed. 

The simulations were carried out on a 80286-based personal computer, running at 
12 Mnz.  
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